Hydrothermally synthesized H₂V₃O₈ as cathode material for Li-ion batteries

Daniela Reiff, Simone Pokrant

Institute of Chemistry and Physics of Materials, University of Salzburg, 5020 Salzburg, Austria

Vanadium pentoxide (V_2O_5) is a transition metal oxide, which has been studied as cathode material for Li-ion batteries. Its advantages include high theoretical energy density (380 Wh kg⁻¹) [1], low cost and abundance. [2] However, practical energy densities of V_2O_5 have not surpassed 150–210 Wh kg⁻¹ [1], mainly because of the limited specific surface area combined with low electrical conductivity and a low cycling stability. [2]

Therefore other types of layered vanadium oxides, e.g. hydrated vanadium oxide $(H_2V_3O_8 \text{ or } V_3O_7*H_2O)$, which possesses mixed valance states of V^{4+} and V^{5+} are used as cathode materials. These lead to an improved electronic conductivity and the hydrogen bonding in the interlayer of $H_2V_3O_8$ further stabilizes the structure. [3]

In this contribution, we present the properties of H₂V₃O₈ (Figure 1) synthesized under hydrothermal conditions as cathode material for Li-ion batteries.

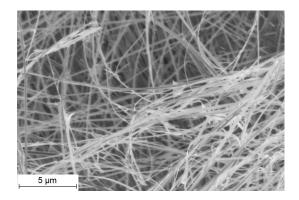


Figure 1 – SEM image of hydrothermally synthesized H₂V₃O₈

^[1] Turgut M. Gür, Energy Environ. Sci. 2018, 11, 2696-2767

^[2] Wenchao Bi et. al. RSC Advances 2017, 7, 7179

^[3] Zuowei Liu et al. Solid State Ionics, 2019, 329 74-81