Study of CO Oxidation Catalysis by LaCoO₃/ZrO₂ at Low Temperature and the Influence of SO₂

Matthias Schebeck^a, Christian Weiß^b, Heinz Ragossnig^b and Bernhard Rummer^c

 ^a Chair of Process Technology and Industrial Environmental Protection, Montanuniversitaet Leoben, 8700 Leoben, Austria
^bTreibacher Industrie AG, 9330 Althofen, Austria
^cvoestalpine Stahl GmbH, 4020 Linz, Austria

Different processes in industry produce CO containing flue gases. Often, low temperature oxidation of CO to CO_2 is desirable for energy exploitation as well as environmental considerations. The presence of SO₂ increases the difficulty of developing an oxidizing catalyst for temperatures below 250 °C. Known catalysts based on platinum show significant conversion of SO₂ to SO₃ which forms an unwanted liquid film on solid surfaces in contact with the humid gas. This phenomenon will promote limitations for species transport to and from the catalysts active surface. For a better understanding of the ongoing processes, a generally valid model for the capillary condensation of sulfuric acid solutions based on the Kelvin equation is applied. Towards the development of a carbon selective oxidizing catalyst perovskites are seen as promising active phases, whereby LaCoO3 supported on ZrO2 is evaluated by performing thermogravimetric analyses with FTIR off gas analysis to study the influence of SO_2 on the activity of the catalyst. It can be demonstrated that for certain conditions the conversion of SO_2 does not take place. However, a deactivation by SO_2 is observed which can be described by a simple acid base model. Based on the gained knowledge, suggestions for future research and development are presented.