Unraveling the surface properties of CuO/ZrO₂ systems with CO and CO₂ adsorption and TPR *in situ* FT-IR experiments

Maximilian Watschinger, Kevin Ploner, Bernhard Klötzer and Simon Penner

Department of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria

For a climate-friendly future an economy based on hydrogen is claimed to be the most promising one. Methanol with its excellent properties for storage and distribution could be the ideal chemical hydrogen carrier and the carbon-neutral fuel of the future. [1] With the aid of an optimized methanol steam reforming (MSR) catalyst, hydrogen accompanied by CO₂ could be released and subsequently utilized in a proton exchange membrane fuel cell (PEMFC) for production of electrical energy. One of the most important factors in MSR is to tune the catalyst towards maximum CO₂ selectivity, because CO, originating from potential side reactions, poisons the PEMFC electrodes. Another crucial aspect refers to the long-term stability. [2] It was previously found by Purnama et. al. that under selected experimental conditions the Cu/tetragonal(t)-ZrO₂ interface is capable of catalyzing methanol steam reforming at higher CO₂ selectivity and long-term stability compared to the monoclinic ZrO₂ modification. [3]

We, thus, investigated CO and CO₂ adsorption on two representative CuO/t-ZrO₂ catalysts, which were prepared by impregnation and co-precipitation, to obtain the relevant surface acidity and basicity utilizing *in situ* FT-IR spectroscopy. Specific adsorptions, especially in the fingerprint area from 1600 - 1000 cm⁻¹, are used to identify intermediates or spectators in the MSR reaction. Furthermore, TPRe (temperature programmed reaction) experiments up to 723 K with CO under flowing conditions reveal that at 353 K CO₂ evolves and at 453 K CO reduces CuO to metallic Cu⁰. Specific carbonates, identified in the adsorption experiments, are then decomposed. At this point, also polydentate carbonates (closely-spaced Zr⁴⁺ coordinatively unsaturated sites) and formates arise. These investigations could unravel crucial intermediates steering the reaction either towards MSR or potential side reactions.

^[1] G. A. Olah, Angew. Chem. Int. Ed. 44 (2005), Nr. 18, S. 2636–2639.

^[2] M. Behrens, M. Armbrüster, Catalysis for Alternative Energy Generation, 2012, S. 175-235.

^[3] H. Purnama et. al., Catal. Lett. 94 (2004), 1/2, S. 61–68.