Charge storage mechanism of Mn²⁺ or Cu²⁺ doped Na_{2+2x}Fe_{2-x}(SO₄)₃ as cathode material for Sodium ion batteries

Jürgen Schoiber^a, Nicola Hüsing^a, and Bruce Dunn^b

^aInstitute of Materials Chemistry, University of Salzburg, 5020 Salzburg, Austria ^bInstitute of Materials Science and Engineering, University of California, Los Angeles, CA 90095

 $Na_{2+2x}Fe_{2-x}(SO_4)_3$ is considered as promising cathode material for sodium ion batteries since it provides high operating potential (3.7 V) and reasonable capacity (100 mAh g⁻¹) [1]. Due to its low electrical conductivity, synthesis strategies were developed to wrap the sulfate-salt particles into conductive layers, *e.g.* graphene oxide, to increase the electrochemical performance [2] – [4]. Even though, fundamental properties, *e.g.* diffusion coefficient, structural evolution during charge/discharge processes or diffusion pathways of the Na-ion in the structure were evaluated, less is known on possible pseudocapacitive behavior of the material [2], [5] – [8].

In that regard, we investigated the charge storage mechanism, surface-controlled or diffusion-controlled, of (un)doped $Na_{2+2x}Fe_{2-x}(SO_4)_3$ compounds, by means of cyclic voltammetry and galvanostatic charge/discharge procedures. We determined fundamental parameters to identify the charge storage mechanism and discuss the influence of the dopant which was chosen to be Mn^{2+} or Cu^{2+} .

^[1] P. Barpanda, G. Oyama, S. Nishimura, S. C. Chung and A. Yamada, Nat Commun, 2014, 5, 4358.

^[2] M. Chen, D. Cortie, Z. Hu, H. Jin, S. Wang, Q. Gu, W. Hua, E. Wang, W. Lai, L. Chen, S.-L. Chou, X.-L. Wang and S.-X. Dou, *Adv. Energy Mater.*, **2018**, 8, 1800944.

^[3] Y. Liu, R. Rajagopalan, E. Wang, M. Chen, W. Hua, B. Zhong, Y. Zhong, Z. Wu and X. Guo, ACS *Sustainable Chemistry & Engineering*, **2018**, *6*, 16105.

^[4] W. Wang, X. Liu, Q. Xu, H. Liu, Y.-G. Wang, Y. Xia, Y. Cao and X. Ai, J. Mater. Chem. A, 2018, 6, 4354.

^[5] J. Lu and A. Yamada, *ChemElectroChem*, 2016, 3, 902.

^[6] M. Shishkin and H. Sato, The Journal of Physical Chemistry C, 2017, 121, 20067.

^[7] R. B. Araujo, M. S. Islam, S. Chakraborty and R. Ahuja, J. Mater. Chem. A, 2016, 4, 451.

^[8] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo and A. Yamada, *Nat Commun*, **2015**, *6*, 6544.