Chemical Structure and Thermal Properties of flexible Polyurethanes with Silicon Carbide

Patcharapon Somdee^a, Tímea Lassú-Kuknyó^b, Csaba Kónya^b, Kálmán Marossy^{a,b}

^a Institute of Ceramic and Polymer Engineering, University of Miskolc 3515, Hungary ^b BorsodChem Zrt., Kazincbarcika 3700, Hungary

Flexible polyurethane elastomers and silicon carbide (SiC) were prepared to the composites by using polyether polyol and 4,4'-diphenylmethane diisocyanate for the main ingredients. SiC was added from 0 wt.% up to 30 wt.% by the solution mixing. Infrared (IR) spectroscopy was used to investigate the chemical structure of the composites. IR results clearly showed increasing of the peak intensity of CH₂- group (2850-2970 cm⁻¹) when SiC fraction was increased. This can be suggesting that SiC fraction affect polymeric chain of flexible polyurethane, especially in the soft segment [1], whenever SiC particle evenly disperse in polyurethane elastomers matrix. Moreover, the relative intensity of CH_2 increase with decrease in chain length [2]. Differential scanning calorimetry (DSC) measurements were carried out for thermal characterization. The thermograms reveal that the glass transition temperature of the soft segment (T_{g,ss}) of polyurethane elastomers did not change significantly with adding SiC. T_{g,ss} is exhibited at around -64°C. Besides, the enthalpy of melting was increased with increasing SiC fraction while the endothermic peak temperature showed between 66-70°C. The broad endotherms peak tends to increase with high fraction of SiC. This indicated that SiC fraction related to a small degree of ordering in the hard segment domains [3, 4]. However, the glass transition temperature of the hard segment could not detect by DSC technique in this study.

^[1] K. L. Auten, Z. S. Petovic: J Polym Sci B Polym Phys, Vol. 40 (2002), p. 1316

^[2] J. Coates, in: Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, in press

^[3] M. Rogulska, A. Kultys, J. Lubczak: J Therm Anal Calorim, Vol. 121 (2015), p. 397

^[4] M. Rogulska, A. Kultys: J Therm Anal Calorim, Vol. 126 (2016), p. 225