The NMR signature of gluconoylation - a frequent N-terminal modification of recombinant proteins

David Schweida^a, Pierre Barraud^{b,c}, Christof Regl^{a,d}, Fionna E. Loughlin^{b,e}, Christian G. Huber^{a,d}, Chiara Cabrele^{a,d}, Mario Schubert^{a,b,d}

^aDept. Biosciences, University of Salzburg, 5020 Salzburg, Austria
^bInstitute of Mol. Biol. and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
^cInstitut de biologie physico-chimique (IBPC), Université Paris Diderot,
75005 Paris, France

^dChristian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, 5020 Salzburg, Austria ^eDept. of Biochem. & Mol. Biol., Monash University, Victoria 3800, Australia

N-terminal gluconoylation is a moderately frequent modification in recombinant proteins expressed in *E. coli*, in particular in proteins bearing an N-terminal histidinetag. N-terminal sequences prone to gluconoylation are rich in histidines, for example (Met)-Gly-Ser-Ser-His₆ – a typical N-terminal sequence found in many commercial vectors. This post-translational modification has been investigated mainly by mass spectrometry. Although its NMR signals must have been observed earlier in spectra of 13 C/ 15 N labeled proteins, an NMR characterization was lacking so far.

Here we present the complete ¹H and ¹³C chemical shift assignment of the N-terminal gluconoyl modification [1], based on a selection of histidine-tagged protein constructs starting with Met-Gly-...-(His)₆. The chemical shifts presented here can now be used as a reference for the identification of gluconoylation in recombinant proteins, in particular when isotopically labeled.

^[1] Schweida, D., Barraud, B., Regl, C., Loughlin, F.E., Huber, C.G., Cabrele, C., Schubert, M. (2019). *J. Biomol. NMR* 73, 71-79.